
CHAPTER IV

THE MACRO-LEVEL PARTICIPATION MODELING

After modeling the micro PL-site choice decision, the next step is to model the

determinants of the total number of trips a licensed angler takes during a season.. It

is theoretically possible to model jointly the discrete product-line/site choices and the

total participation decision; however, the data and computational requirements for

the correct treatment of the corner- solutions implied by zero trips of certain cate-

gories makes an integrated utility-theoretic model practically infeasible. Essentially,

researchers appear to face a trade-off: they either implement a “utility-theoretic”

framework that does not properly model the statistics of the corner solutions; or

they model the micro and macro decisions in separate models that may address the

corner-solution problem but do not form an integrated utility-theoretic framework.

In this chapter, we first discuss variants of the former approach, in which total

participation is modeled as the sum of independent participation decisions made

on each choice occasion throughout the season. We then summarize the Bockstael,

Hanemann and Strand (1986) critique of this approach and their alternative proposal

to model directly the corner solution. Finally, we develop our own model, which is in

the spirit of the second approach.

Due to severe data limitations at the total participation level, our model is sub-

stantialiy different from the standard treatment in the literature. We do not know the
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total number of season trips: our macro-level  information is limited to the duration

between trips, and this variable is censored because we only observe the duration

from last trip to the survey return date, not to the subsequent trip. By incorporating

a key result from stochastic renewal theory in our modeling, we are able to estimate

the determinants of the between-trip durations with a stochastic renewal model and

then to derive the total number of trips in a season from the duration model. To

accommodate the different trip durations, we develop a competing risks model; to

allow for variations in site quality throughout the open-water season: we incorporate

time-varying covariates in the model.

Part ic ipat ion as  the  Sum of  Independent  Trip Decis ions

To integrate the participation decision with the PL-site decision in one framework:

the utility level u. associated with not taking a trip on the current choice occasion

has to be specified. Individuals are hypothesized to determine whether to take a trip

by comparing u. with the expected maximum utility of taking a trip. A trip will

consequently be taken if and only if

For empirical estimation, the relationship between the random element ~0 associ-

ated with the no-trip utility u. and the other random terms e(l,j) has to be specified.

Bockstael et. al.  (1986) derive the repeated NMNL model by extending the gen-

eralized extreme value (GEV) distribution (III.8) employed for modeling of PL-site

choices in the previous chapter to the joint distribution

(IV.18)

The parameter 0 is still the common index of correlation of the random terms (m, j)
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for sites under PL rn.’ The participation decision is illustrated in figure IV.1

The probability that an individual will take a trip in period t with the given GEV

distribution (IV.18) can be shown to be

while the probability of no participation is

(IV. 19)

(IV.20)

Because the micro-level decisions regarding the trips are nested within the participate/

no-participation decision. the participation choice is not characterized by the IIA

restriction. With this model. the micro  PL-site choices and m a c r o  par t ic ipa t ion

decision can be estimated simultaneously if the participation and PL-site choice data

are available for all periods. However: the framework is one of repeated choices, where

the decision on any choice occasion is independent of the choices on all other choice

occasions

The Alaska fisheries study by Carson: Hanemann, Gum and Mitchell (1987) is the

only one to our knowledge that estimates a repeated nested logit model with complete

trip information throughout a season ’ In their model, a sport fishing angler can take

up to a maximum of three trips in a single week. Let 2’,t’ denote the utility an individual

i. can receive from taking k trips during week t. Then the participation probability

for having m (= 0, 1,2,3) fishing trips is

They then maximize the likelihood function

’ When u = 1. the no-trip option is treated as just another alternative, and the model degenerates
to a standard MNL (i.e., it is not nested over the participate/no-participate decision.)

’ Stating that fishing opportunities in Alaska change dramatically over a season. Carson et. al.
incorporate weekly choices in the mode! and allow the covariates to vary from week to week.
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Figure IV.1: The choice occasion participation decision
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where kx is the number of trips taken by i in week t. Because the mean number of

trips during a week taken by those with more than two trips was 3.63, the expected

number of seasonal trips is calculated as

More typically, researchers know the total number of trips in a season: but only

have detailed trip information about one trip. The recent paper by Morey et al. (1991)

provides a good example of a model designed for such data.3  With the available site

choice information J. the probability density for the micro decision can be formulated

as

where 5;: is the probability that i would choose his or her actual destination J, in the

MNL setup. The total number of trips K is then used to derive the combinatorial

participation probability density

where  7ry is the probability of i not taking a trip during the period that the site

decision is known, K, is the number of total trips taken by i, and T is the number of

choice occasions in the whole season. Morey et al. maximize the complete likelihood

function

The expected total number of trips an individual i would take when there are T choice

periods in a year is simply [T . (1 - 7ry)j.

3 Their model allows for different distributions for the participation and site choice decisions.
However, as they note, it is neither a repeated standard MNL nor a repeated nested MNL because
it does not incorporate a stochastic component in the indirect utility function conditional upon no
participation.
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The Crit ique  and an Alternat ive  Proposal

Bockstael et al. (1986, pp. 185-86 and 1987, p. 13) critique. the class of participa-

tion models highlighted above; on the grounds that they characterize total participa-

tion simply as a sum of independent decisions on each choice occasion. In particular,

they criticize the models because the occurrence of a season with no trips happens

merely by accident: the probability of no participation throughout the season is sim-

ply the product of the probabilities of no participation on each choice occasion.

When individuals no longer choose “interior solutions” to the utility maximization

problem. then the well-behaved, continuous properties of neoclassical demand theory

no longer hold. One must instead model the probability statements with Kuhn-

Tucker conditions. The problem with the models developed above is that they do not

incorporate the discontinuity of the indirect utility functions as individuals switch

among different consumption regimes.

A switching regressions model is appropriate to capture statistically the different

regimes. Unfortunately the dimensionality of the problem is generally one less than

the number of commodities not consumed. Given the level of detail in the random

utility models and the many expected corner solutions for most individuals, it appears

practically infeasible to integrate over the number of cumulative distribution functions

that would be required with either the direct or indirect Kuhn-Tucker conditions.

Bockstael et. al. conclude that “without attempting to estimate the corner solutions,

there appears to be no consistent way to link independent discrete choice decisions

and a macro decision for total trips with a common underlying utility maximization

framework” (1986, p. 186).)

They propose an alternative method in which the expected number of trips to all

sites over the season T may be interpreted as:
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where the second term on the right-hand side is the probability that the individual

engages in any recreation during the season.. The equation can be estimated with

Tobit, Cragg or Heckman selection procedures. In this method the decision to ever-

participate is estimated directly, allowing the researcher to characterize the role of

factors such as poor health, adverse financial conditions, or unusually heavy working

loads.

The Stochast ic  Renewal  Approach

A major data problem we confront in modeling total trip participation is that

we do not know the total number of recreational fishing trips. Therefore, we cannot

employ the conventional estimating approaches discussed above! in which the depen-

dent variable is the total number of trips. To accommodate our special data needs,

we have developed an alternative framework for modeling the decision about total

participation.

As noted above, our information about trips is limited to the duration between

trips, and this variable is censored: we only observe the duration from last trip to the

survey return date, not to the subsequent trip. Consequently, we estimate a duration

mode! of the period between trips, from which we then calculate the expected number

of trips. We draw upon a key result in stochastic renewal theory to adapt the duration

model to handle the right-censored data.

We incorporate time-varying covariates in the duration model. In addition, we

know the length of the most recent trip taken by an angler, which allows us to

estimate anglers’ demand for trips of different durations. To include this information:

we develop a competing risks framework in which individuals may end their spell

of no-trips by choosing any one of three trip-lengths (day; weekend, 2-4 days; or

vacation, 5+ days). Finally we have some individuals in the sample who took no

trips during the period about which they were questioned. We develop procedures to
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model this right- and left-censored duration data.

The development of the full model requires an extended discussion below due

to the many features that have been incorporated. To start,  we outline the basic

stochastic renewal model, in which the number of trips taken during a period of time

is a renewal process. We develop the participation model first for the special case

of an exponentially-distributed duration variable and Poisson-distributed trip counts,

because the intuition of the model is more accessible with the simpler formulas of

the special case. In the next sections of the chapter, we extend the exponential-

Poisson model to accommodate: right-censored inter-trip duration data; time-varying

covariates: competing risks; and right- and left-censored trip durations.

We then develop the model using the Weibull distribution for inter-trip durations,

in order to relax the special assumptions of the exponential-Poisson case. The sub-

sequent four sections follow a similar pattern to the discussion of the exponential

model.

The Stochastic Renewal Process

We assume that the number of trips taken during a period of time is a r e n e w a l

process: in which the between-trip duration s are independently and identically dis-

tributed. Let T be the random variable of independent time spells between successive

trips” taken by individual i. Denote the probability density function (PDF) of T b y

and the cumulative density function (CDF) by

’ We ignore the spell of a trip. There are two possible interpretations. First. trips are assumed to
be instantaneous events for modeling convenience. Second, when an angler decides to begin a trip
on a certain day, he/she decides simultaneous!y not to have another trip during the duration, of the
trip.
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The survival  function S(t): which yields the probability that the duration T will be

longer than t, is defined as

Hence S(0)  = 1 and S(x) = 0, while F(0)  = 0 and F(oo) = 1. Another conceptually

useful function, the hazard rate function, is defined as

which measures the conditional probability of taking the next trip at time t, g iven

that no trip has been taken before t. A model with a constant hazard rate is said to

be duration independent.

These functions will be used below to derive the maximum likelihood estimator

of T. Note that the PDF and hazard rate are just two different ways of describing

the same probability distribution. Given the PDF, the hazard rate function can be

uniquely determined, and vice versa.

Let us first look at the special case of the Poisson- Exponential distribution. As

Kiefer (1988, p. 652) points out, the exponential distribution is simple to work with

and to interpret. However. it may be too restrictive in that no duration dependency

is allowed. More flexible distributions, such as Weibull,  will be considered next.

The Exponential Distribution

Suppose the time spell T, between successively taken trips k and (k + 1) by in-

dividual i follows the exponential distribution with parameter A, > 0. All durations

are independently distributed. The PDF for Ti (2 0) is then

’ The exponential distribution. is a special case of the Weibull distribution. Thus we can conduct
a nested model test to check the appropriateness of using the exponential distribution.
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and the corresponding CDF is

Thus, the hazard rate is

Since it is constant for an individual i at any time t > 0; it is called the memory less

property which is unique to the exponential distribution. We assume A; = epsZ  > 0,

that is, the parameter A, is a log-linear function of X,, which consists of both personal

and site variables. /3 is assumed to be identical across al! individuals.

Given observations of the completed durations tp for each individual i in the data,

the log likelihood function LL can be formed as follows

The maximum likelihood estimates b can then be obtained by maximizing the log

likelihood function LL with respect to /3 and setting the first derivatives to zero. This

gives us

Note that the expected duration E[T t] for the exponential distribution f%(f)  given

above is just

Our goal, however, is the counting process N;(S),  which records the number of trip

occurrences in a time period S. In this case, the counting process N,(S) corresponding

to the exponentially distributed between-trip durations is Poisson distributed 6 with

’ See Ross (1963, pp. 35-36) or Taylor and Karlin (1984, pp. 188-89) for proof.
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the discrete PDF:

and expected value

The parameter Xi = eflsn (calculated for each individual i) has an intuitive inter-

pretation of being the expected number of trips individual i will take in one unit of

time. Taking days to be the unit of time, the expected number of trips in our Poisson

process thus can be readily calculated as the number of days S in a fishing season

multiplied by X 1 for each individual i .

To justify the use of the Poisson-Exponential distribution, we have to refer back

to the basic postulates of a Poisson process. It  has been proved that a counting

process {A:(S),  S 10) is Poisson distributed with parameter X (> 0) if the following.

postulates are satisfied: 7

1. A-(O)  = 0. That is, no trip has occured prier to the start of the time interval
s = 0.

2. The time intervals between trips are stationary and independently distributed.

A counting process is stationary if the distribution of the number of occurrences
(in this case, trips) in any interval of time depends only on the length of the
time interval. It is independent  if the number of occurrences taken in disjoint
time intervals are independent.

3 .  P{R(s)  = 1) = As A o(s)  as s --+ 0 .

This posits that the probability of having exactly one trip in a very short time
interval s is proportional to the length of the interval. The function o(s)  i s
defined to have the property that

4 .  P{N(s)  2 2) = o(s) as s - 0.

This posits that the probability of having at least two trips in a very short time
period s is very small and can be ignored.

’ See Ross (1983, pp. 32-34) or Taylor and Karlin (1984, pp. 181-184) for proof.
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These are reasonable assumptions to make regarding fishing-trip behavior. The ad-

vantage of using the Poisson-Exponential pair is that no extra work is necessary to

calculate expected total trips E ;!V(S)I.

Data Limitation

A severe limitation with our data is that we do not observe any completed spell T,.

What we have are only the date the last trip began (L;) and the date the questionnaire

was returned (R,). Consider R, to be a random censoring point which truncated the

spell in question before it was completed. s Let the unobserved date of the next trip

taken by i (after the questionnaire return date R,) be I Vi) which would have been the

endpoint of the sampled duration if it had not been terminated prematurely.

We can then define the following three random variables

Age:

Residual life:

Life of sampled observation:

Of these three variables, only age is observed. See figure (IV.2) to illustrate the

relationship among the three variables. This is illustrated in figure (IV.2).

It is well known in the stochastic processes literature that the expected length of

an inspected duration B, is greater than that of a population duration T,, due to the

greater likelihood of sampling longer intervals. This is called length-biased sampling.

To distinguish between the sampled interval B, and the population duration T,, the

latter will be called normal life in the discussion below, following the convention in

the stochastic processes literature.

For the exponential duration case, it can further be shown that (1) both A and

’ The censoring mechanism should be independent of the last trip date L,.
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Figure IV.2: The truncated between-trip duration

1-i have the same distribution as T, if sampling occurs after the renewal process has

been ongoing for a long time. and (2) the length of the sampled interval containing

the sampling point Ri is expected to be twice that of a normal life interval T;, known

as the famous inspection paradozg  Therefore, in the limit,

The solution to our limited data problem will then involve the following steps:

1. We can first estimate the parameters of the age (ail;)  distribution using the
available age data.

2. Since age -4, and normal life 7’;  have the same distribution, the parameters
obtained for A; are exactly those for T;.

’ See Taylor and Karlin (1984), pp. 282-84.
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3. The seasonal total trips can then be calculated using the estimate x,.

The procedure outlined above is not limited to the exponential case. We can al-

ways derive the distribution of age A f rom any given distribution function for the reg-

ular life T. Therefore it is genrally the case that parameters in the normal life distri-

bution can be estimated with age data/distribution, if normal life data/distributions

are not available.

Time-Varying Covariates

So far we have assumed that each individual i has a constant exponential param-

eter X t across time. Since conditions at recreation sites (part of the -X, vector) often

vary during a season. both S: and A, should be generalized to be time indexed. The

time-varying elements in ,Y, are called time-varying covariates. The probability of

an individual taking trips at different times will hence depend on the time-dependent

explanatory variables S?(L).

In the following discussion. a mere statement of interval t presupposes implicitly

a starting point of time 0. The notation t ,z will be used when necessary to indicate

that the duration t runs from time s to time P, instead of from 0 to t. The endpoints

are important now since the parameters A., are time dependent.

In the case of time-varying parameters, the CDF of T, (‘1 0) becomes

and the PDF becomes

with Ai > 0 at any moment of time t. The distribution functions still necessarily

have the properties that F,(O) = !! and F,(x) = 1. The  ins tantaneous  hazard  ra te

h 2(t) = X ,it j depends solely on the value of parameter A i at time t .
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The probability that an individual i has a completed duration T, greater than t

and less than ‘r (t < 7’) is then

The corresponding Poisson counting process can be shown to have the distribution

w h e r e  X ; E JO” X I(~) du . The proof is only a generalization of that for the time-

independent version. The expected number of trips taken by i during a season from

day 0 to day S is then

Given observations of the completed durations t, (running from L t to 17J and

assuming X Jt) = e cs*(t) for time t, we can construct the log likelihood function L L

as follows

The discrete time version of the log likelihood function LL i s

The maximum likelihood estimate b is then the solution to the equation

The expected number of trips of individual i during a season from day 0 to day S i s

then simply
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Figure IV.3: Derivation of the age distribution

One more issue wemust address is the estimation of parameters ,0 when we only

have age data instead of completed durations. This can be done by first deriving the

distribution of age -4; as follows.

for  t < Ai. Note that Prob{.4;  > t} = 0 for t > A,. This  i s  shown in  f igure  ( IV.3) .

Basically, we are looking backwards from the given censoring point R, to find the

time the last trip occurred, not looking forwards in search of the next trip date.

Therefore, the CDF of age ~4;  is
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and the probability density of having an age -4, = t from the date of last trip i, (=

R, - t) to the survey return date R, is

The parameters ,8 can hence be estimated using age data and the age distribution

fA(t).  They are exactly those that appear in the normal life distribution. The total

trips can then be calculated as

Competing Risk Participation

To further enrich our participation model, consider the more complicated situation

where an individual can take either a day trip, a weekend trip. or a vacation trip.

Trips of unequal lengths are considered to represent different. substitute commodities

because their utility trade-offs may be different. In other words, long trips are taken

for purposes somewhat different from those of short trips. Here we’ll think of them as

different types of events (or risks) that would terminate the durations and index them

as d = 1, 2, 3. In the following discussion, individual index i is omitted for notational

simplicity.

The single-type exponential specification can now be extended by defining the

type-specific hazard rate as

This is the probability density of an individual i taking a type d trip immediately

after time t conditional on no trip occurrence of any type up to time t. The non-type-

specific hazard rate of individual i taking any type of trip at t is then simply
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since trips of different types cannot be taken simultaneously on a choice occasion,

r:e., they are mutually exclusive. It must necessarily follow that 0 5 hdt) 2 1 for all

t y p e s  d a n d  0 5 IL(~)  < 1.

The non-type-specific CDF of at least one trip of any type up to time t i s

and the non-type-specific survival function of no trip at all from time 0 to time t i s

The type-specific CDF of having at least one type d trip up to time t i s

and the type-specific survival function of no type d trip from time 0 to time t i s

do not untrue and

The non-type-specific PDF

measures the probability of having no trip up to time t and then a trip of any type

at time t. The type-specific PDF below

gives us the probability of having no trip before t and then a type d trip at t. N o t e

that by definition

As in the previous sections, let 2, and L, be the observed censoring date and last

trip date respectively. Also let D, be the type of the last trip taken by individual i i n
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our sample data. The likelihood function, incorporating the time-varying covariate

results, is

And the log likelihood function is

(IV.21)

(IV.22)

Alternatively, we can write the likelihood function L a s

Durations corresponding to all types except the chosen type D, are regarded as cen-

sored at individual i’s survey return date R;. The parameter /3d for A id(t) = esdsr(t)

can be estimated by maximizing the above likelihood function.

The expected number of type j trips taken by i during a season from day 0 to day

S is readily calculated as

The expected number of total trips taken by i is then cdEiNi~S)I.

Note that if individuals have homogeneous (i.e.. not time- varying) hazard Ad.  the

log likelihood function in the discrete time context reduces to

Let t, (= R, -L,) denote the observed age of i and xd be the number of individuals

in the sample whose last trips are type d. The MLE of Ad is then
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Censored Age Durations

One further complication we address with this model is to accommodate the cen-

sored age duration varible.

The variable Li denotes the date individual i took the last trip, as reported in

the questionnaire returned on date Ri. For some individuals k, however, L k is not

available, and all we know is that no trip was ever taken from the beginning of sample

per iod C (= April 1, 1983) up to the questionnaire return date Rk. This gives us

the left censored age data. Recognizing that age duration is essentially right-censored

trip duration! the data for these individuals can alternatively be itnerpreted as fight-

and left-censored trip durations.

The fact that the age duration has ‘survived’ the period from C to Rk suggests

that we augment the likelihood function (IV.21) with

to include the non-participants for whom we only have censored age. Therefore the

complete log likelihood function is

where Pi is the sample of participating people, and Fo is the set of non-participants.

Using Less Restrictive Distributions

Estimation can also be performed using other more flexible functional forms (e.g.,

Weibull, Log-Logistic. or Box-Cox hazards) for the distribution of between-trip du-

rations if the Poisson-Exponential dual appears too restrictive. Note that the expo-

nential distribution has only one parameter A, and its mean is equal to its standard

deviat ion E(T) = Vm = l/X. Therefore the mean and variance cannot be ad-

justed separately. As pointed out by Kiefer (1988), the exponential is unlikely to be
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an adequate description of the data if the sample contains both very long and short

durations.

Let f(t) and r(t) be the common PDF and CDF of the independently distributed

between-trip intervals T for all individuals. The mean interval between successive

trips is then

The estimation procedure for any f(t) is basically the same as that described in the

previous section. To my knowledge, however, no computer package can yet handle

the full time-varying competing risk age duration model, though partial estimation

can indeed be carried out by some existing commercial programs.‘”  In the following

sections: the more general Weibull distribution will be employed to illustrate the use

of other distribution functions and to test the exponential duration assumption.

The Weibull Distribution

Now assume that the between-trip time intervals are all independent and Weibull-

distributed with two parameters: a shape parameter r (> 0) and a scale parameter

X (> 0). The distribution functions arel’

P D F  :

C D F  :

S u r v i v a l :

H a z a r d :

The shape parameter determines the shape of the hazard function h(t).  W h e n

“’ For instance, Limdep (1989, chapters 27 and 28) can only handle Cox’s proportional hazards
model without competing risks, or basic Weibull with neither time-varying covariates nor competing
risks.

I1 For a brief discussion, on the Weibull distribution.,  see Lee (1980), pp. 162-67.
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7 > 1. the hazard rate h ( t ) increases with t: the case of positive duration dependence.

W h e n  7 < 1; the hazard rate h(t)  decl ines  with t, the case of n e g a t i v e  d u r a t i o n

dependence .  When  -, = 1, the model reduces to the exponential case and we have

a constant hazard regardless of the value of t. Therefore, the appropriateness of

employing the exponential distribution can be empirically tested by formulating a

test of the hypothesis Ho : y = 1 I2

The expected length of between-trip intervals is

and the variance is

where r is the gamma function defined asr3

Note that when -i = 1, we have p = r(2)/X  = l/X a n d  Q’ = 1/X2, e x a c t l y  t h e

exponential case.

The three tasks we need to perform to modify the basic Weibull distribution for

our estimation problem are

the derivation of the age distribution,

the inclusion of the time-varying covariates, and

the development of the competing risk model.

l2 The Weibull hazard is monotonic. Other generalizations that embed Weibull as a special case
are Log-Logistic and Box-Cox hazards, for example. Both hazards allow non-monotonic behavior.
See Lancaster (1990), chapter 3.

I3 r(zj is simply (Z - l)! when x is a non- negative integer.
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The Time-Varying Weibull Age Distribution

To derive the time-varying version of the Weibull distribution, we assume that the

scale of the hazard rate is time dependent, i.e., A(t) > 0 for all t. However, the shape

of the hazard function, determined by the value of ?. is preset and not time-varying.

This maintains ~ as a constant. For the estimation of the Weibull model, we further

posit that

where the explanatory variables .Y1 are constant through time while A-2(t)  vary with

time. Conceptually .Y1 consists of variables that determine the shape of the hazard

function, and X2(t)  contains the variables that affect the trip-taking probabilities at

t. There may possibly be overlapping between .Y1 and .X2 since A-2 can also have

components that do not vary with time. If Q~Yl > 0 (or equivalently, 7 > 1), an

individual is said to have positive duration dependence. If aX1 = 0 (or v = 1), there

is no duration dependence. Otherwise, negative duration dependence exists.

By modifying the basic Weibull distribution functions, we can derive the time-

varying Weibull probability system as follows:

Hazard :

Survival :

CDF :

PDF :

It is straightforward to verify that I’(O) = 0 and F(m) = 1 and
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and hence the above equations constitute a consistent distribution definition.

Following the notation of (t ; fzR- J used for age duration in previous sections, the

age distribution can be derived:

The Competing Risk Weibull Model

For the three types of trips (day, weekend and vacation, indexed by j = 1, 2, 3,

respectively) that an individual may take, we assume that

We further assume that the shape parameter y is constant and identical for all types

of tripsi

The type-specific hazard rate, under the assumption of inter-type dependence is

(IV.23)

The non-type-specific hazard rate, the sum of the type- specific hazards by definition,

is then simply

These hazard functions imply that

” There are two reasons for the different treatments. Firstly, we see no reason why different types
of trips should have different duration dependencies. Secondly, and more importantly, we need to
keep the model under a controllable degree of complexity.
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Figure IV.4: Hazard rate with inter-type dependence

The probability density of taking a type J trip at t, conditional on no trip up
to t, depends not only on the history of parameter XJ(~) before time t, but also
on the history of parameters of all other types.

The hazard ratio of having different types of trips at time t is not affected by the
parameter values in the past. This can be seen by noting that proportinoaltiy
holds as follows:

Figure (IV.4) shows the hazard rate behaviors of different trip types for the case of

positive duration dependence. Note that the hazards of all types become zero with

each trip occurrence (i.e., t = 0) whatever its type.r’

l5 In the case of negative duration dependence, all the hazards become infinity the moment after
a trip is taken.
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Figure IV.5: Hazard rate without inter-type dependence

The hazard rate based on inter-type dependence discussed above can be contrasted

with a hazard rate without inter- type dependence illustrated in figure (IV.5)

and

Note that the between-trip duration t is indexed by the trip type j since it is now

type-specific. When there is no inter-type dependence among different hazards, the

hazard rate of one trip type is not affected by the occurrences of trips of other types.

Therefore, the hazard rate of one trip type continues to increase until a trip of its

own type is taken, at that time it drops to zero while hazards of other trip types keep

increasing.
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In our analysis we assume that there is inter-type dependence and employ the

hazard rates defined in (IV.23). It is not difficult to verify that the distribution

functions corresponding to the hazards (IV.23) and (IV.24) are

Estimating the Weibull Model

Let fj(t liF:) denote the probability density of individual i taking the most recent

trip of type J, and having an observed age from L 1 to R,. The likelihood function for

the sample F1 for whom we have the last trip data is then

For the non-participant sample PO. we know only that no trip was taken from C, t h e

beginning of sample period. up to the questionnaire return date RIt. The likelihood

for this sample is

Combining the participants and the non-participants, the complete log likelihood

function is
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where

for a participant i in PI )

(for a non-participant k in PO).

The first derivatives with respect to the parameters a and 0 are consequently

a n d
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where

for a participant i in P,)

(for a non-participant k in PO)

and

And the second derivatives (the Hessian matrix) are
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and, for j f rn,

where

(for a participant i in PI)

(for a non-participant k in PO).

The maximum l ikel ihood es t imates  &. and b can be obtained by the Newton-

Raphson, algorithm. They are consistent: asymptotically efficient and asymptotically

normal. The variance- covariance matrix ( -E[T’2LL]-1)  can be approximated by
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If the null hypothesis Ijc : Q = 0 is rejected by the likelihood ratio test, the use of the

exponential distribution cannot be justified, and we have to calculate the expected

total seasonal trips for the Weibull model.i6

Renewal Counting Process for Weibull

If the use of the exponential is rejected in favor of the Weibull, the distribution

of the corresponding renewal counting process N(s);  s _> 0, has to be determined to

calculate the expected number of trips in season.

Define the random variable II-, as the sum of R consecutive between-trip durations.

i.e.,

The distribution of II’, is then the c o n v o l u t i o n  of the CDFs of the R dura t ions

T1. T2, . . . . T,.

Definition IV.1 If two independent random variables X and Y have the distribution
functions F,y and J’l-: respectively. then the distribution of their sum Z = X + Y i s
the convolution of Fs and Fy! defined as

Since all between-trip durations Yk have the. common CDF F(s) = Prob{T 5 s}: the

CDF of LTV,is the n-fold convolution of F(s)  with itself, denoted by l’,,. Hence.

consecutive

Given ,ri(s) E F(s), any F,(s) for R > 2 can be calculated using the recursive formula

I6 An interesting intermediate case is where the intercept is nonzero, but the slope coefficients are. .
zero.
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The probability of having exactly n trips in a time period S i s

The expected number of trips in the time interval S is then

While a closed-form formula for F, is difficult to obtain. the values of F,(S)

can be approximated by numerical solutions and the calculation of n-2(S) can be

carried out as follows for the discrete time case. First the values of F;(s)  = F(s)  for

s = 1,2. . ., S are calculated and stored. The values of T2(s)  for s = 1,2, . . . , S c a n

then be computed using the values of F1 now available.

This goes on until, for some A’! Fhy(S) is small enough to

t h a t  f(0) = 0 a n d  F,(O)  = 0. ‘tin. The  expec t ed  number

approximately

be safely ignored. Note

of seasonal trips is thus

The function nr( S), called the renewal function, will always converge since it is fi-

nite for a finite S, as proved in Ross (1983, p. 57). Note that the simple formula
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m(S) = S/p does not generally hold for other distributions besides the Poisson-

Exponential case, where it occurs due to the special memoryless property of the

exponential distribution. Though it is true that both respectively.

and

it is a mistake to use (S/p)  as the expected value of N(S) when S is not large enough.

In our study, S is the length of a fishing season, the time period during which we count

the trips. and is (sibstantially) less than infinity. Hence the extra work of calculating

m(S) has to be done if a less restrictive distribution like the Weibull is preferred.


